
1

To appear inMeasurement Science & Technology Article ID: MST/322622/RAP in the category ofRapid Communications

Asynchronous Data-driven Classification
of Weapon SystemsF

Xin Jin† Kushal Mukherjee† Shalabh Gupta† Asok Ray† Shashi Phoha† Thyagaraju Damarla‡

xuj103@psu.edu kum162@psu.edu szg107@psu.edu axr2@psu.edu sxp26@psu.edu rdamarla@arl.army.mil

Keywords:Weapon Systems; Pattern Classification; Symbolic Dynamic Filtering; Language Measure; Support Vector Machine

Abstract—This paper addresses real-time weapon classification
by analysis of asynchronous acoustic data, collected from micro-
phones on a sensor network. The weapon classification algorithm
consists of two parts: (i) feature extraction from time-series
data using Symbolic Dynamic Filtering (SDF), and (ii) pattern
classification based on the extracted features using Language
Measure (LM) and Support Vector Machine (SVM). The pro-
posed algorithm has been tested on field data, generated by firing
of two types of rifles. The results of analysis demonstrate high
accuracy and fast execution of the pattern classification algorithm
with low memory requirements. Potential applications include
simultaneous shooter localization and weapon classification with
soldier-wearable networked sensors.

1. INTRODUCTION

Sniper attacks have become one of the major sources of
casualty in asymmetric warfare, especially in urban environ-
ments. A counter-sniper system that assists identificationof
the shooter’s location and weapon class information would
significantly reduce the potential peril of both soldiers and
civilian population. Counter-sniper systems make use of sev-
eral different physical phenomena that are related to weapon
data (e.g., acoustic, visual, or electromagnetic signals). In spite
of the wide range of possible measurement devices, acoustic
signals (e.g., muzzle blast, shockwave, and surface vibra-
tion [1]) apparently provide the most convenient and accurate
way to identify sniper shots. Hence, a majority of existing
counter-sniper systems use acoustic signals as the primary
information source [2]. In recent years, several commercial
sniper localization systems have been developed [3] [4] [5],
which have not taken weapon classification into considera-
tion. To this end, Volgyesiet al. [6] developed a soldier-
wearable sensor network system for both shooter localization
and weapon classification. It estimates the trajectory, range,
caliber, and weapon type using data from a single sensor
or fusion of multiple time-synchronized sensors, where the
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weapon classification is dependent on the localization. To
alleviate the requirement of time synchronization, Damarla et
al. [7] developed a sniper localization method for a network
of sensors, which relies only on thetime difference of arrival
(TDOA) between the muzzle blast and shock wave from
multiple single sensor nodes, relaxing the need for precise
time synchronization across the network.

The goal of the research work explored in this paper is to
formulate a real-time weapon classification algorithm based
on asynchronous time series data collected from microphones
on a sensor network. The major contribution of this paper
is formulation of a weapon classification algorithm that is
capable of real-time feature extraction and pattern classifica-
tion directly from the time series of asynchronous acoustic
signals, collected from networked sensors. This algorithmis
independent of sniper location and thus is expected to be more
reliable under adverse conditions in battle fields than existing
weapon classification systems [6].

2. REVIEW OF UNDERLYING MATHEMATICAL CONCEPTS

The weapon classification algorithm is built upon the
following major concepts: (i) Symbolic Dynamic Filtering
(SDF) [8][9] for feature extraction; and (ii) Language Measure
(LM) [10][11] and Support Vector Machine (SVM) [12][13]
for pattern classification. While the theories of SDF, LM, and
SVM are reported in details in existing literature, this section
briefly presents the underlying concepts that have significant
relevance to this paper.

A. Symbolic Dynamic Filtering (SDF) for Feature extraction

Figure 1 pictorially elucidates the concepts of partitioning
a finite region of the phase space of the dynamical system
under consideration and a mapping from the partitioned space
into the symbol alphabet, where the symbols are indicated by
Greek letters (e.g.,α, β, γ, δ, · · · ). It also shows conversion of
the symbol sequence into a probabilistic finite-state automaton
(PFSA) and generation of the state probability vectors at
the current and the reference conditions. The states of the
PFSA and the associated histograms in Fig. 1 are indicated by
numerics (i.e., 0, 1, 2 and 3). Feature extraction from training
data is comprised of the following steps.
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Fig. 1. Concept of Symbolic Dynamic Filtering (SDF)

1) Collection of Time Series Data:Sensor time series data,
generated from a physical system or its dynamical model, are
collected as training or test sets over the range of operation.
A compact (i.e., closed and bounded) regionΩ ∈ R

n (i.e.,
the n-dimensional real space), wheren ∈ N (i.e., the set of
positive integers), within which the quasi-stationary time series
is circumscribed, is identified. Let the space of time seriesdata
sets be represented asY , where the number of data points
in each time series is sufficiently large for convergence of
statistical properties within a specified threshold [9]. Then,
yi = {yi

1, y
i
2, ...} ∈ Y denotes a time series for the data set

i ∈ {0, 1, ..., l− 1}, wherel is the number of time series data
sets under consideration.

2) Space Partitioning:Time series data are encoded by
introducing a partitionB ≡ {B0, ..., B(m−1)} that consists
of m mutually exclusive (i.e.,Bj ∩ Bk = ∅ ∀j 6= k),
and exhaustive (i.e.,∪m−1

j=0 Bj = Ω) cells. Let each cell be
labeled by symbolsσj ∈ Σ where Σ = {σ0, ..., σm−1}
is called thealphabet. This process of coarse graining can
be executed by appropriate partitioning (e.g., uniform or
maximum entropy [14]) of the data set. Then, the data points
of the reference time seriesy0, which visit the cellBj are
assigned the corresponding symbol asσj ∀j = 0, 1, ..., m−1.
This step enables transformation of the reference time series
y0 to a symbol sequences0= {s0

1, s
0
2, ...}, where eachs0

j

∈ Σ. To alleviate the difficulties associated with noisy time
series, symbolization is carried out by Hilbert transform-based
Analytical Signal Space Partitioning (ASSP) [14], which isan
essential ingredient of SDF analysis in the proposed weapon
classification algorithm. Symbol sequencess1, · · · , sl−1 are
generated from the respective time series,y1, · · · , yl−1, using
the same partitioning for generation of the symbol sequence
s0 from the reference time seriesy0.

3) Construction of Probabilistic Finite State Automata
(PFSA): Probabilistic finite state automata (PFSA) are con-
structed [8] with a chosen depthD and the corresponding
(r × r) state transition matricesΠi = [πi

jk] are generated by
running the symbol sequences through the PFSA structure; the
pair of subscriptsj, k ∈ {1, 2, ..., r} denotes a state transition
from j to k and the superscripti denotes theith training

data set,i ∈ {0, 1, ..., l − 1}. Sinceπi
jk ≥ 0 is the transition

probability from statej to statek, Π
i is a stochastic matrix,

i.e.,
∑

k πi
jk = 1 ∀j ∈ {1, 2, ..., r}.

B. Pattern Classification

A threshold-based binary classifier is constructed in terms
of a signed scalar measure [10][11] of the language generated
by the PFSAΠ. The classification logic is as follows:

Class =

{

C1 : if ν < 0

C2 : if ν > 0
(1)

where ν is the language measure obtained by assigning a
weight to each state of the PFSAΠ.

Definition 2.1: The characteristic vectorχ assigns a signed
real weight to each of ther states of the PFSA, where larger
weights are assigned to relatively more desirable states. The
(1 × r) characteristic vector is defined as:

χ = [χ1 χ2 · · · χr] (2)

Definition 2.2: Measure of the language generated by a
PFSA in terms of its characteristic vectorχ is defined as:

ν̄(θ) = θ [I − (1 − θ)Π]−1
χ

T where θ ∈ (0, 1) (3)

Proposition 2.1:The measurēν(0) , limθ→0+ ν̄(θ) exists
and is bounded as:||ν̄(0)||∞ ≤ ||χ||∞.

Proof: Given in [11].
Proposition 2.2:Given a primitive (i.e., irreducible and

acyclic) state transition matrixΠ, the measure in Eq. (3)
reduces tōν(0) = ν 1 in the limit, where1 , [1 1 . . . 1]T .
Then, the scalar measureν is denoted as [11]:

ν = pχ
T (4)

where p = [p1, p2, ..., pr] is the (1 × r) state probability
vector that is the (sum-normalized) left eigenvector ofΠ

corresponding to its unique unity eigenvalue [15].
Proof: Given in [11].

The scalar measureν is of the form

ν = pχ
T =

r
∑

i=1

piχi =

r−1
∑

i=1

piχi + prχr

=
r−1
∑

i=1

piχi +

(

1 −
r−1
∑

i=1

pi

)

χr

=

r−1
∑

i=1

pi (χi − χr) + χr =

r−1
∑

i=1

piai + b (5)

where ai , (χi − χr) and b , χr. Therefore, the scalar
measureν is an affine transformation of the(r−1) independent
state probabilities, where therth state probability may be
expressed in the form1−

∑r−1
i=1 pi. Further, the equi-measure

surfaces in space of probability vectors are hyper-planes as
described by Eq, (5). The classifier construction involves
computation of the values ofai, i = 1, ..., r − 1 and b,
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Fig. 2. Flow chart of the proposed methodology

that in turn may be used to evaluate the characteristic vector
χ = [χ1 ... χr]. The classifier follows the form of Eq. (1).

The support vector machine (SVM) [13][12] estimatesχ

and simultaneously maximizes the separation margin between
the two classes. In the linearly separable case, the binary
SVM classifier selects a hyperplane to separate the two classes
by maximizing the margin that is defined as the sum of the
distances of the hyperplane to the closest points of the two
classes. If the two classes are non-separable, positive slack
variables are introduced to allow some of the training samples
to fall on the wrong side of the separating hyperplane. The
SVM then finds the hyperplane that maximizes the margin
and simultaneously minimizes a quantity directly related to the
number of classification errors. This procedure, called “Soft
Margin” method, is an extension of the linear SVM [16].

Figure 2 depicts the flow chart of the proposed classification
algorithm that is constructed based on the theories of SDF,
LM, and SVM. Upon collection of acoustic time series data,
symbol sequences are generated by Analytic Signal Space
Partitioning Partitioning (ASSP) [14] that is invariant for both
training and testing stages. In the training stage,ltrain sets of
rifle-shot time series data with known class labels are selected.
A PFSA structure is constructed using SDF; subsequently, a
feature vectorpi, i ∈ {0, ..., ltrain−1} is generated for each set
of the rifle-shot data. The time series data belongs to exactly
one of the two known classesC1 andC2.

The feature vectors are inputs to the LM & SVM module
that generates a hyperplane that maximizes the margin and
minimizes classification errors between feature vectors ofthe
training data. A linear kernel has been used in this paper. In
the testing stage, the feature vectorspi, i ∈ {0, ..., ltest − 1}
are generated from SDF with unknown class labels, and are
then separated by the hyperplane obtained in the training stage.
The SM & SVM algorithm yields a binary output (i.e.,C1 or
C2) as the class labels of the testing data.

3. RESULTS OFFIELD DATA ANALYSIS

Figure 3 shows a data collection scenario for classification
of two weapon types, namely, Rifle 1 and Rifle 2 that were
fired from two different locations that are∼ 60m apart. Eight
microphone sensors are distributed over a region of∼ 30m×
30m around each of the three aim-points that are∼ 250m

down range.
For each of the three aim-points, the data set of Rifle 1,

which is generated by firing Rifle 1 from location B, has been
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Fig. 3. A data collection scenario with 8 microphones and 2 rifle locations

used for partitioning; these data sets are not used in the training
stage or testing stage. Referring to Section 2, a maximum-
entropy analytic signal space partitioning (ASSP) [14] is
generated in the radial direction with|ΣR| = 4 segments
and, in the angular direction, with|ΣA| = 1 segment [14];
thus, the alphabet size is|Σ| , |ΣA| × |ΣR| = 4. Thus,
for each aim-point, there is a unique partition that is kept
invariant in both training and testing stages. For construction
of PFSA from symbol sequences, a depth ofD = 1 is
found to be adequate to capture sufficient information for
pattern classification in this application [8]. Each feature vector
obtained as the (stationary) state probability vector of the
PFSA represents the respective signature of the rifle acoustic
signal. The top row of Fig. 4 exhibits a typical time series
of acoustic data from Rifle 1 and Rifle 2, which are collected
from the same microphone; examples of feature vectors for the
two types of rifles are shown as histograms in the bottom row
of Fig. 4, which display how the structure of the underlying
probability distribution varies with the rifle type.
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Fig. 4. Acoustic signals and respective feature vectors

Three plots, arranged as a vertical column in Fig. 5, present
the results of classification for two types of rifles firing from
location A at aim-points 1, 2 and 3, respectively, based on the
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time series data of Microphone 4. No occurrence of pattern
classification errors is observed in these experiments for this
specific choice of feature extraction and pattern classification
parameters. For each aim-point, the respective plot in Fig.5
exhibits the results of classification for a single set of Rifle
2 data and a combination of two different sets of Rifle 1
data that have been collected on two different days. For each
aim-point, about a half of the data in each set are used for
training the SVM classifier and the remaining data for testing
the classification algorithm. As stated earlier, the partition of
individual data sets for each aim-point is generated based on
the respective data set of Rifle 1 fired from the building as
indicated by firing location B in Fig. 3. In Fig. 5, the feature
extracted from each data set is represented by a vector that
belongs to the 4-dimensional real spaceR

4 because|Σ| = 4
and D = 1. Since the elements of each feature vector are
stationary probabilities of the four states of a PFSA, the
sum of the (positive) elements of each feature vector is unity
(i.e., belonging to the 3-dimensional simplex). Therefore, only
three elements of the feature vector are linearly independent,
implying that the decision space is 3-dimensional in this
setting. For each of the three plots in Fig. 5, the 2-dimensional
hyperplane unambiguously separates the patterns of Rifle 2
from those of Rifle 1. In this way, a time series of rifle data
is reliably tested for identification of the unknown rifle type,
namely, Rifle 1 or Rifle 2 by observing to which side of the
hyperplane the feature vector belongs.

The execution time of the algorithm for each plot in
Fig. 5 is less than 1.5 seconds on a desktop computer, which
demonstrates its real-time execution capability.

A. Channel Effects on Classification Results

This section presents a summary of channel effects (i.e.
the degradation of acoustic information due to propagation
through the atmosphere) on the classification results, which are
attributed by: (i) variations in the recorded acoustic signals due
to relative positions of microphones and calibration settings;
and (ii) Environmental conditions such as vegetation, terrain,
and urban buildings that influence the channel. While the first
cause is mainly a hardware issue that can be mitigated by
appropriate calibration, the second cause (i.e., environmental
effects) is the focus of this section.

In real-world applications (e.g., an urban environment with
tall buildings and various other objects), the shock wave and
the muzzle blast from sniper firing are subject to reflection,
attenuation, absorption, diffraction, and other wave modifica-
tions as they propagate through the atmosphere. A microphone
placed in the vicinity of an aim-point receives pressure waves
arriving directly from the source and waves arriving later
from other directions due to reflections and scattering. At
distances far from the rifle shot trajectory, the shock wave
is expected to disperse sufficiently by spatial spreading such
that it may no longer be detectable compared to the ambient
noise [1]. The situation becomes much more complicated if the

(a) Aim-point 1

(b) Aim-point 2

(c) Aim-point 3

Fig. 5. Rifle Classification at aim-points 1, 2, and 3 (Microphone # 4).

surroundings include obstacles and reflecting surfaces so that
the received acoustic signal contains multipath interference,
diffraction effects, and other propagation-related flaws.In
essence, the environmental effects could be totally different
at different sensor locations. An ideal weapon classification
system should be independent of the channel effects due to
environmental variations.

The results presented earlier in this section make use
of the acoustic time series data from a single microphone,
namely, Microphone 4 for weapon classification. This sub-
section reports the results obtained based on the data from
all 8 microphones, including Microphone 4, to investigate the
impact of environmental effects on the weapon classification.
The microphones are placed in different locations and have
varying levels of echo/reflection due to their slightly different
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TABLE I
RIFLE CLASSIFICATION RESULTS OFALL M ICROPHONES

Microphone # Aim-point 1 Aim-point 2 Aim-point 3

Microphone 1 95.83% 100.00% 83.33%

Microphone 2 100.00% 100.00% 100.00%

Microphone 3 100.00% 100.00% 95.83%

Microphone 4 100.00% 100.00% 100.00%

Microphone 5 91.67% 100.00% 100.00%

Microphone 6 91.67% 100.00% 100.00%

Microphone 7 91.67% 100.00% 100.00%

Microphone 8 91.67% 91.67% 100.00%

Average 97.22%

environment. Table I summarizes the classification results
obtained from all 8 microphones for each of the 3 aim-points.
The total number of tests (i.e., rifle shots) for each aim-
point is 24, and the classification success rate is calculated
by subtracting the ratio of the number of false classifications
over the total test number from 1. It is seen in Table I that
a majority of the microphones have a very high classification
success rate. The classification success in Microphone 1 is
slightly lower than that in other microphones due to improper
calibration as recorded in the original log of the field test.The
average rate of successful classification is 97.22%, which is
a clear indication of its reliability and effectiveness. Trade-off
between probabilities of successful and false classification is
a topic of future research and is not addressed in this paper.

The quality of classification could be further improved by:
(i) increasing the number of states in the PFSA, and (ii) con-
verting the linear hyperplane in the SVM into a hypersurface
by an appropriate nonlinear transformation.

4. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper presents a data-driven method of real-time
weapon classification based on time series data collected from
asynchronous microphones on a sensor network. The pattern
classification algorithm is feature-based in the sense thatit
first converts the raw time series data into a feature vector of
significantly lower dimension, and then pattern classification is
performed based on the extracted feature vectors. The feature-
based approach is well-suited to the weapon classification
problem because direct usage of a large volume of raw data
with unknown or partially known noise statistics is inefficient
from both analytical and computational perspectives. Based on
the data set analyzed in this study, the proposed classification
algorithm appears to be nearly channel independent, which
renders it potentially reliable and effective in the real-world
applications.

The discipline of data-driven weapon classification is rela-
tively new and requires further theoretical and experimental re-
search. In this context, the following topics are recommended

for future research before execution of a field application of
the proposed weapon classification algorithm:

• Extension of the current algorithm to multi-class pattern
classification with advanced SVM tools.

• Enhancement of classification performance through usage
of multi-sensor information fusion.

• Investigation of the effects of signal-to-noise ratio
and clutter parameters for automatic target recognition
(ATR) [17]. In this context, while making a trade-off
between probability of false alarms and probability of
successful detection, additional costs related to weapon
localization could be included in the composite cost
functional, which will augment the standard Receiver
Operating Characteristics (ROC) curve to a higher di-
mensional Pareto surface.
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